Ongoing activities in the development of a next generation of the Canadian Forest Fire Danger Rating System

CFFDRS - Its History (20th century)

Natural Resources

The Canadian Fire Danger Rating System

Natural Resources

Structure of the Canadian Forest Fire Behavior Prediction (FBP) System

CFFDRS – Its usage

- Wildfire Management
 - Used tactically and strategically by fire agencies to help the basic fire environment most activities
 - e.g., Imposing restricted fire zones (fire bans- public and industrial), fire ignition risk, fire growth potential, fire intensity, potential suppression resource effectiveness, resource preparedness and positioning, prioritization of suppression targets, fireline safety, evacuation planning, values protection
 - e.g., PB planning, fuels management planning, training
- Science

Natural Resources

e.g., climate change impacts and adaptation scenario development, carbon monitoring and accounting, smoke transport modelling...

CFFDRS – Its usage

- Used universally throughout Canada
 - As well as in a number of other countries

- We think a major part of its success in uptake is due to the philosophical approach: scale and simplicity
 - Observing <u>key processes</u> in the field
 - Development of <u>modular</u> empirically-based models of process
 - Using very simple physics/physical reasoning to frame model structure
 - Creation of <u>simple interpretative tools</u>/applications

CFFDRS – Its Issues

- Simple Issues (but important for a empirically- based system)
 - Higher resolution of data available
 - Temporal and spatial resolution of weather
 - Spatially-detailed, fine resolution forest composition data (satellite, land-based, ...lidar)
 - New sources of information
 - Satellite observations (e.g., greenness, forest floor moisture)
 - Direct, real-time measurement of fuel moisture
 - Ease in accessing, synthesizing and displaying/using large amounts of information
- ALSO of course ongoing advances in fire science

CFFDRS – Its Issues

- More Complex issues
 - Some fuel types and modifications of fuel types not addressed
 - Current system is a child of the fire exclusion paradigm
 - The challenges in the wildland fire management decision-making environment have changed
 - Wildland-urban interface and community risk reduction, changing fuels and forest health, climate change, public expectation
 - A new generation CFFDRS will not solve these problems
 - Provide information to help support decisions

CFFDRS-Next Generation

- This is a continuing evolution of the system not a tear down/rebuild (in keeping with the ongoing philosophy)
 - The goals:
 - Provide systems that use the data available to enable fire management to engage in risk assessment and determine appropriate response to unwanted fire
 - Keep the approach that has lead to success of the system while introducing more flexibility into the models

Current thinking

- Our broader research program will focus mainly on three areas and is linked with our program of delivery of these products:
 - New inputs and drivers to danger rating
 - Core information/data needs of a new generation of the CFFDRS
 - Working with our FMIS group to determine how best to deliver
 - Core components of the CFFDRS
 - e.g., Behaviour, fuel moisture, fire occurrence
 - Integrated science and management applications
 - e.g., Emissions modelling, smoke modelling

.....This is a work in progress

CFFDRS-NG - Approach

- Reanalysis of existing CFS data with newer model forms
 - e.g. Fuel load specific consumption, generalized conifer crown fire spread model
- Gathering new data from field (where possible) and other published/available sources
 - e.g. fire behaviour, fuel consumption fuel moisture, fuel structure, wildfire obs., weather models
- Using more explicit characterization of basic key processes
 - Not a major leap to detailed physical modelling but a step toward making some key implicit relationships in the system more explicit
 - e.g., dual equilibrium spread model, direct linkages between spread rate and wind/moisture, direct use of forest structure information
 - This will be hidden from all but the most advanced users

Core System: FBP

Future components of the Fire Behaviour **Prediction System**

- Probability of ignition sustainability
- New point fire acceleration model
- Mixed surface/crown initiation/crown fire spread model
 - New explicit surface fire models driven directly by direct estimates of wind and moisture (specific to a stand)

CORE System: FBP cont'd

- Fuel load specific consumption models
 - Forest floor, D&D, aerial fuels
 - Carbon
- Combustion zone characteristics models/outputs
 - Residence time, flame front depth, flame length, smouldering/flaming partitioning, flame temperature, emissions
- Eventually.....Fuel break breaching and spotting probability models

Fire behaviour today in CFFDRS

FBP System models are based on

- Observations of replicated sets of experimental burns in a range of important fuel types
 - Also wildfire and Rx Fire observations

- There are 16 such fuel types in 3 broad groupings
 - Conifers
 - Deciduous mixedwoods
 - Open

- Models for a specific fuel type must encapsulate potential for surface and also crown fire
 - Van Wagner proposed a dual model form to capture this
- Models link wind and moisture through the FWI System's Initial Spread Index
 - Unitless blend of wind and moisture for a standard conifer type

e.g., Dual equilibrium ROS

A lot of important detail get implicitly rolled into this simple single equation approach

- point when surface fire begins crowning
- instand wind reduction
- Maximum spread rates
- Interaction of wind and moisture

C-3 - Jack Pine FFMC=10% (91) BUI=60 FMC=120%

CBH = 8 m

C-3 - Jack Pine FFMC=10% (91) **BUI=60** FMC=120%

CBH=4 m

C-3

FFMC=91

BUI=60

FMC=120%

MC_{litter}=10%

Wind_{IN}=25%

CBD=0.15kg/m³

Ressources naturelles

Future Spread Rate models

- To accomplish this general 'dual' or multi-phase model for rate of spread
 - Reanalysing our surface fire data sets to create a set of forest floor cover specific models that depend on :
 - Instand wind
 - estimated based on stand characteristics
 - Fuel moisture content
 - New forest floor cover specific models that account for stand closure (solar radiation)

CFFDRS - Fuel Consumption

Similar to Spread Rate

- A model for each fuel type based on experimental observations
- One of the main limitations:
 - Fuel load is implicitly assumed (except in the grass model)

$$SFC = A \cdot (1 - e^{-B \cdot BUI})^C$$

CFFDRS: Fuels

- IN FBP today
 - essentially 16 fuel types each described mostly qualitatively
 - e.g., species, structure

Forest Floor

Continuous feathermoss; moderately deep compact organic layer

Surface and ladder fuels

Spares conifer understory may be present; sparse down woody fuels; tree crowns separated from the ground

Stand Structure and composition

Fully stocked, mature jack or lodgepole pine stands

CFFDRS-NG: Fuels

- Maintaining the current benchmark fuel types initially (16)
 - Simply completely defining in terms of loads, depths, lengths, densities etc.
 - This will be invisible to those who don't care
 - Working with field personnel to add some new subtypes into groups to address established holes
- This approach will allow users to quantitatively describe a specific fuel complex when the need is there.
 - The lack of this ability has been the number one complaint about the system

CFFDRS-NG: Fuels

- Fuel types will be become more explicitly defined and quantitative ->>fuel models
- e.g.,
 - Fuel loads
 - Stand density
 - Forest floor cover/litter load
 - Organic layer depth

Fuel models will allow adjustable fuel loads

Fuel consumption – Load dependent

CORE System: FBP Challenges

- Sources of empirical data (a foundation of the system)
 - Experimental burning
 - We'd be glad to partner with agencies still....
 -these are really big undertakings however
 - cannot run programs like during the 70's and 80's
 -There are some key gaps
 - FBAN observations
 - This is a resource we need to tap consistently for targetted observations.
 - E.g., fire transitions, shoulder periods of day, foliar moisture effects?, mixedwood
 - Remote sensing

CORE System: FBP Challenges

Digression:

Experimental burning: Some data gaps/model weaknesses (a short non-exclusive list)

- Initiating (point) fire growth to equilibrium
- Surface fire and transition to crowning
 - Our surface fire datasets are limited
- Early morning/late evening spread
 - Come from FGM pushing spread overnight
- Insect kill effects (e.g., MPB)
- Effect of green vegetation on spread rate
- Fire brand generation (numbers)

CORE System : FBP Challenges

- Sources of empirical data (a foundation of the system)
 - Experimental burning
 - We'd be glad to partner with agencies still....
 -these are really big undertakings however
 - cannot run programs like during the 70's and 80's
 - There are some key gaps
 - FBAN observations
 - This is a resource we need to tap consistently for targetted observations.
 - E.g., fire transitions, shoulder periods of day, foliar moisture effects?, mixedwood
 - Remote sensing

CORE System: FWI System

Where are we today?

- Moisture codes and index calculation methods relatively unchanged since 1970
 - Single fuel type, relative indicators of fire behaviour.
- Weather measurement timing originates from 1938 methodology.
-but the FWI System still does a remarkably good job of capturing regional fire activity.

CORE System: FWI System

-The flow of the basic system will remain largely intact and as is, with some simple clarifications/updates
- As before the Standard moisture models in FWI System will be tracking a mature closed canopy jack pine stand.
- FFMC : Some modification but same data requirement for the standard FWI system stand
 - Inconsistencies between daily, hourly calculation and diurnal adjustment are reconciled...by making the diurnal weather driving the standard daily calculation explicit
 - Users then could then adjust for local differences or season
 - Option for adjusting for underlying moisture in organic layer
 - A version of this currently exists

CORE System: FWI System

.....The flow of the basic system will remain largely intact and as is, with some simple clarifications/updates

DMC/DC

- Similarly DMC and DC standards kept (same general data requirements)
 - Drying rate (evapotranspiration) model updated
 - solar radiation
 - wind

CORE System: Moisture specifics

- Litter/fine fuel moisture
 - More calibrations between FFMC and litter moisture documented
 - A number of these exist already
 - New methods for tracking litter moisture in several important forest floor cover types
 - solar radiation included via LAI of overstory
 - instand wind estimated for key forest types based on density
 - Model for tracking moisture in elevated fine fuels (no organic layer influence)
 - The new grass model is a specific case of this
- The standard FFMC/moisture content conversion

CORE System: Moisture specifics

- Organic layer
 - Upper organic (DMC) still a key layer for us
 - Modifying drying rate (ET) model
 - Solar radiation, wind, overstory type (and density)
 - General forest floor characteristics
 - Deeper organic (DC)
 - Update of ET models
 - Include a general effect of underlying soil strata
 - Peat
 - We are also trying to develop some moisture indicators that will provide information about vulnerability of peatlands

CORE System: Moisture specifics

- Foliar Moisture and green up timing
 - new weather-based and tree physiology-based foliar moisture content model and leaf flush model
 - Replacing the geographically based one
 - New weather-based grass curing function
 - Also we will be exploring the utility of satellite green up observations for these variabiles (INPUTS)

CORE System: Fire occurrence

- Models to carry out mapping of fire occurrence potential (human and lightning) to be developed for management jurisdictions across Canada.
 - Provided daily on CWFIS and
 - Provided to agencies to adopt into Info systems if desired
- Also planning on developing methods of assessing the potential occurrence of 'problem' fires and overall expected daily fire load

More Challenges

- The list is long...But one critical one is Tech
 Transfer
 - We are working with our CFS FMIS group to get new hourly/daily information products out for use/evaluation on their web portal.
 - Over the next year we hope to role out versions of national lightning and human caused fire.
 - New moisture/models indexes (along with solar radiation estimation methods)
 - We will work with individual agencies to test newer models and develop tech transfer training.
 - And ideally collect validation and modelling data

Fire Behaviour in the Next Generation Canadian Forest Fire Danger Rating System

Mike Wotton mike.wotton@utoronto.ca

